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Abstract
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Equitable energy distribution has long been an issue of concern when 
studying the prevalence of high energy burdens, as not many low-in-
come households benefit from energy-efficiency programs that are 
designed to reduce economic hardship and poverty. Rather, many 
low-income households continue to live in older homes, which are 
often characterized by structural issues such as poor insulation, inef-
ficient HVAC systems, leaky roofs, inefficient and sometimes oversized 
appliances which increase energy costs. Despite energy abundance in 
the US and the propagation of energy efficiency programs and weath-
erization policies, low-income households continue to pay high energy 
bills while their environmental, social, and economic conditions have 
eroded. This paper sought to assess opportunities that offer the great-
est hope to reduce energy burdens in the US. The result of this analysis 
shows regional imbalances in energy burdens, which are greatest in the 
Southeast and Northeast regions of the country. The results in this paper 
show that utility bills, housing stock and poverty rate present a threat 
to affordability of residential housing in the US. Most LMI households 
are energy impoverished, and more than two-thirds experience energy 
burdens that are above double digits. As a result of these findings, this 
study recommends that energy efficiency be viewed as economic policy 
to reduce poverty and improve housing, and that energy efficiency and 
assistance programs be focused to support low-income households.
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assistance, utility bills, climate change. 
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Household energy consumption patterns have evolved since the 1970s following 
the inception of the Weatherization Assistance Program (WAP) and the Low-Income 
Home Energy Assistance Program (LIHEAP) by the US Congress. Energy is a necessity 
that affects every facet of life be it health, housing, education, or mobility (Brown 
et al., 2020). However, alarmingly, despite energy abundance in the US coupled 
with the propagation of energy efficiency, bill-payment assistance programs, and 
weatherization programs, low-income households continue to pay high energy bills 
while their environmental, social, and economic conditions erode. Equitable energy 
distribution has long been an issue of concern when studying the prevalence of high 
energy burdens, and there is far greater eligibility and need to participate in existing 
bill payment assistance and weatherization programs than there is availability. Rather, 
many low-income households continue to live in older homes, which are often 
characterized by structural issues such as poor insulation, inefficient HVAC systems, 
leaky roofs, and inefficient and sometimes oversized appliances that increase energy 
costs (Brown et al., 2020). 

At-risk and disadvantaged communities throughout the nation are now advocating 
fairness and transparency in the design and distribution of clean energy programs. 
By implication, it is not just clean energy that matters — as it has previously been 
propagated by the literature — but the way the distribution of clean energy enhances 
equity and transparency and enables poverty reduction in the economy (Curti et 
al., 2018). Additionally, many customers now struggle to pay their utility bills due 
to the unprecedented economic, social, and health challenges of the COVID-19 
pandemic that decimated household disposable income and altered families’ ways 
of life. Despite recent events, underserved communities have experienced higher 
electricity and natural gas bills, even as their environmental, social, and economic 
conditions eroded. This combination of factors results from and is made worse by 
high unemployment, poor housing conditions, limited access to social amenities, lack 
of access to credit, poverty, utility default, higher than average eviction rates, historic 
segregation, the continuing impacts of redlining, and a lack of trust between utility 
customers and utility providers. Because of this, disadvantaged communities continue 
to be disproportionately impacted by higher, inequitable energy burdens, threatening 
low- and moderate-income (LMI, hereafter) households with housing instability 
beyond that caused by income insecurity, compared to communities occupied by 
residents in wealthier income groups. This inequity places great responsibility on state 
and local governments, which have the authority to take actions such as advancing 
new energy efficiency programs, increasing the transparency of energy efficiency in 
rental housing, and improving enforcement of building codes.

Over the past decade many studies have examined the effects of energy burden on 
LMI households across major cities of the United States (often termed Metropolitan 
Statistical Areas - MSAs), as well as suburban communities. The term energy burden1 
as used in this study describes an array of complex issues such as poverty, equity, and 
quality of life. McCormick (2015) highlighted the importance of clean energy efficiency 
programs that reduce rural energy burdens. The paper by McCormick (2015) established 
that LMI residents in rural communities face enormous challenges such as energy 
inaccessibility and energy affordability. In another study, Shoemaker et al. (2018) found 
that regional specificity is a key factor in determining energy burdens, which are higher 
for LMI residents in rural communities. Energy burden is also often considered a social 

1. Introduction and Background

1 Energy burden is calculated as the mean household energy bill (electric and gas) as a percentage of the 
mean household income.
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and environmental issue requiring justice to fully understand ways of improving energy equity 
for vulnerable populations (Hernandez, 2015). In a recent study by Wang et al. (2021), energy 
poverty varies across demographics, with African American households more vulnerable than 
White, Asian, and other minority group households.

Similarly, other studies have examined the implications of high energy burdens on health 
and wellbeing. Proponents of this theory argue that energy burden increases stress due to 
economic hardship and poverty. In a similar vein, low-income communities experience greater 
susceptibility to respiratory diseases linked to poor living conditions often characterized 
by structural issues such as inadequate heating and cooling systems which are known to 
aggravate respiratory concerns and impact mental health (Wright, 2004, Hernandez & Bird, 
2010, Liddell & Morris, 2010, Dear & McMichael, 2011, Li et al., 2014, & Reames et al., 2021). 

The existing literature suggests that LMI households pay significantly more for electricity 
bills than the average household. When studying the evolution of energy burdens in the US 
using Census Bureau 2011 and 2013 American Housing Survey, Drehobl and Loss (2016) 
found the average energy burden for all US cities was 3.5% of household income, whereas 
LMI energy burden stood at approximately 7.2%. Energy burdens for the African American 
households were 5.4% as compared to 4.1% for Latino households based on the sampled 
data for the MSAs. Although the drivers of household energy burden are multifaceted — 
including physical, economic, behavioral, and policy related causes — there is no common 
energy burden threshold. According to Colton (2017),2 an energy burden threshold of 6% is 
often considered an unaffordable margin. An affordability threshold of 6% to 11% of annual 
median income (AMI) seems to be a reasonable energy burden threshold (Fisher, Sheehan & 
Colton, 2015., Liddel et al., 2012). These unsustainable energy burdens are the result of utility 
bills accounting for approximately 8% of low and moderate household incomes, leaving LMI 
households with tough choices to make about keeping the lights on versus paying for other 
necessities such as food or medicine (Drehobl and Ross, 2016). 

Existing literature has not yet established strong evidence of a relationship between energy 
burden and energy prices3 nor is there sufficient empirical evidence of the relationship 
between energy burden and individual utility account default rates. This paper seeks to 
provide answers to the following research questions:

•	 What is the energy burden landscape in the US?

•	 What is the relationship between energy burden and energy prices, characterized by average 
monthly bill payment?

•	 What opportunities offer the greatest hope to reduce energy burdens for LMI households?

•	 What is the relationship between energy burden and climate change as the United States 
continues its transition to a more renewable and efficient energy system?

This paper begins by discussing four theoretical strands of the energy burden-LMI nexus in 
section 2, while section 3 describes developmental evidence, to include energy burden trends 
and non-parametric statistical analysis for methodological comparisons and conceptual 
soundness. Section 4 discusses data and results. These sections are followed by research 
backed solutions to energy burden challenges in the US in section 5. The objective of this 
section is to determine if energy efficiency programs and upgrades are effective in reducing 
energy burden. Section 6 is the conclusion.

2 What is the Home Affordability Gap?
3 This is based on the hypothesis that low prices do not necessarily mean low bills (Drehobl and Ross, 2016).
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2. Literature Review
The term ‘energy burden’ has become a key conceptual construct used to 
measure energy related financial inequity experienced by LMI households and 
inform program and policy decisions that aim to include LMI households in 
solar energy program designs. Patterns of energy consumption have changed 
partly due to high energy demand and consumption as well as shifts in 
demographics. According to Brown et al. (2020) and Drehobl and Ross (2016), 
high energy burdens have causes ranging from a variety of outside factors 
and may be economically driven, behaviorally related, and/or physically 
motivated by policy-oriented determinants. This wide variation is perhaps 
due to diversity in the way LMI households are defined. Table 1 provides a 
summary classification of the high energy burden dichotomy.

Table 1: Classification of High Energy Burden
Classification Definition Type of driver

Energy burden Energy burden is defined as the 
total household utility expenditures 
for heating and cooling as a per-
centage of total income

Economic (Drehobl & Ross., 
2016).

Energy poverty Measured by the degree to which 
access to energy (including fuels) is 
granted or restrained.

Economic, policy

Energy access Energy affordability, energy 
reliability, energy sustainability or 
accessibility to clean energy

Policy and Social

Energy insecurity Vulnerability to utility disconnec-
tion, evictions, and/or default

Economic and Behavioral

Source: Drawn from Brown et al. (2020) and Drehobl and Ross (2016),

Economic and health conditions such as loss of job or severe illness may 
affect an individual’s ability to meet their monthly utility bill payments which 
can lead to involuntary default. It has been shown that most LMI households 
live on chronic persistent hardship which is often characterized by living 
paycheck-to-paycheck. Additionally, LMI households may not be able to 
meet monthly utility bill obligations due to high upfront energy costs which 
are not applied evenly to all customers based on income levels by the utilities. 
LMI household energy burdens can be reduced if utilities can develop a 
framework where fixed charges are determined based on income brackets. 
Reina and Kontokosta (2017) studied how regulations and energy efficiency 
programs help improve renters in multifamily housing. The result of this study 
suggests that it is equally important for LMI homeowners to understand energy 
conservation practices to decrease energy use. This uneven energy use is 
aggravated by extreme weather conditions that raise the need for cooling 
and heating because residences occupied by LMI households are often 
characterized by structural issues such as poor insulation, inefficient HVAC 
systems, leaky roofs, and inefficient and sometimes oversized appliances 
which increase energy costs.



Energy Impoverishment and Energy Insecurity in the United States	 9

2.1 Energy Burden  
Drehobl and Ross (2016) studied the correlational effects of energy burden using data 
from the 2011 US Census Bureau and 2013 American Housing Survey of low-income 
households across 48 US cities. Low-income is defined as residents whose income is 
less than or equal to 80% of area median income (AMI). Several segmentations were 
used in Drehobl and Ross (2016) analysis for the data such as the percentage of LMI 
residents in single family, multifamily homes, rental, and owner-occupied homes. 
The study finds that low-income households and minority households in single and 
multifamily residences experienced higher energy burdens when compared to 3.5% of 
the median energy burden across all cities in the US. The study also showed regional 
imbalances in energy burdens which are greatest in the Southeast and Midwest regions 
of the country.

In another study, Kontokosta et al. (2019) examined over 13,000 multifamily residential 
properties in the US and found that the energy burden for LMI households in multifamily 
housing was 7% compared to 2% for higher income households. The motivation of 
the paper stemmed from the fact that rent, transportation, and utility bills are often 
considered to be the three main components of housing affordability. Of these three 
measures, energy costs are the most misconceived, and ironically, result in the greatest 
financial burdens on LMI households. In a similar vein, Cook and Shah (2018) used 
exploratory research based on interviews to assess the Colorado Energy Office strategy 
of using solar electricity generation to curb energy burden for LMI residents. Three 
energy burden classifications were derived as follows: (a) ‘energy stressed’ – 4%-7%, (b) 
‘energy burdened’ householders – 7%-10% and (c) ‘energy impoverished households’ – 
10% and over. Cook and Shah (2018) recommended proven strategies for designing and 
implementing low-income solar programs in the State of Colorado as well as other US 
states. Meanwhile, Buylova (2020) used census tract data to identify high energy burden 
areas across major US cities. Additionally, Hernandez and Phillips (2015) examined 
energy burdens caused by structural issues and poor housing conditions for a sample 
of 20 low-income households in New York City using surveys and interviews. The study 
determined that weatherization is necessary, but it is not sufficient to address structural 
issues facing LMI communities.

2.2 Energy Affordability 
Several studies have focused on energy affordability. It is alarming that despite energy 
abundance in the US coupled with the propagation of energy efficiency, bill-payment, 
and weatherization programs, LMI households continue to pay a higher percent of their 
income for energy (Heindl, 2015, & Brown et al., 2020). According to Li et al. (2014) 
low-income residents in rural and minority communities are left behind in their pursuit 
of economic welfare as they continue to pay more for electricity and fuel. This paper 
finds that energy burdens are severe in the South compared to other regions of the US 
(also see Drehobl & Ross, 2016., Brown et al., 2020 & Li et al., 2014). In a different study, 
Ray et al. (2019) assessed the relationship between utility voucher and electric bills for 
over 19,000 residential households in Florida and arrived at the conclusion that utility 
bills present the greatest threat to affordability of residential housing. Using a logistic 
regression model, Mohr (2018) investigated fuel poverty in the US using data from the 
2009 Residential Energy Consumption Survey. This study distinguished energy burdened 
renters and homeowners based on income variations. The results from this study reveal 
a strong correlation between fuel poverty and income distribution in the US.
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2.3 Energy Poverty
Another strand of the literature focuses on the social and economic effects of 
energy burden on wellbeing. Energy poverty results from low-income households 
living in homes deprived of basic energy needs such as lack of electric heating or 
modern cooking fuels. Hilbert and Werner (2016) studied energy poverty for New 
York households that cannot properly heat-up their homes, while Chai et al. (2021) 
investigated the implications of rising energy prices for 63,000 residents in Queensland, 
Australia. These studies show that energy accessibility and affordability are key factors 
that can help reduce energy poverty for LMI households. In a similar vein, Bohr and 
McCreery (2020) assessed the relationship between energy burden and poverty in 
the US between 1999 and 2017. Energy burden emanates when a household spends 
at least 10% of its income on electricity and heating services. This study finds that 
income is the main determinant of energy burden, while utility rates amounted to a 
lesser proportion of the variation in energy rates among LMI residential households. 
Using a panel data analysis, the study concluded that at-risk households had 150% - 
200% probability of transitioning to economic hardship and poverty over a two-year 
horizon relative to their non-burdened households. The conclusion drawn from this 
study is that energy burden has the tendency of precluding low-income households 
from enjoying sustainable long-term economic growth. As a result, Bohr and McCreery 
(2020) recommended energy efficiency and assistance programs aimed at low-income 
households. Most studies on energy burden and fuel poverty have been conducted in 
the US, but little research has been done at the international level. Most recently, Chai 
et al. (2021), used a microsimulation model to study the energy poverty in Queensland, 
Australia for approximately 63,000 residential households. This study tested correlations 
of households with energy poverty in relation to their ability to meet rising energy prices. 
Precisely, the study captured the price elasticity of energy prices to the total number 
of households with energy poverty within a given region. Chai et al. (2021) arrived at 
the conclusion that energy poverty is unevenly distributed across Australia. Therefore, 
income disparities, weatherization, and demographic imbalances account for most of 
the energy poverty in Queensland, Australia, according to the study’s findings.

2.4 Energy Insecurity
Energy insecurity has emanated from the uncertainty in bills payment when a low-
income resident is not able to meet their monthly obligations. Vulnerability arises from 
the fear of being disconnected from energy services, especially in the south as compared 
to other regions of the US. This is partly explained by the fact that HVAC systems in the 
south are predominantly electric as compared to natural gas which tend to be more 
affordable in other regions of the US (Elnakat et al., 2016).



Energy Impoverishment and Energy Insecurity in the United States	 11

3. Developmental Evidence
The dataset used in this section is derived from the National Renewable Energy 
Laboratory (NREL, 2021) Solar for All project. The NREL provides census tract 
data for both LMI and non-LMI households. One limitation with this dataset is 
that it is only available at the census tract level. However, given the popularity of 
this dataset, it is robust enough to capture the intended objectives of this paper: 
to assess opportunities that offer the greatest hope to reduce energy burdens 
in the US. The term “energy burden” as used in this study is defined as the total 
household utility expenditures for heating and cooling as a percentage of total 
income (Drehobl and Ross, 2016 & Brown et al., 2020). This definition of energy 
burden excludes water and transportation expenditures.

3.1 Energy Burden Trends

As evidenced from the literature review, several studies have focused on energy 
affordability for LMI households. This literature shows that energy providers 
expect consumers to pay their household energy bills or face disconnection, 
while consumers worry about ability to pay. Proponents of the affordability 
theorem argue that low-income households continue to pay more on energy 
bills despite energy abundance and bills-payment programs and weatherization 
policies in the US. (Heindl, 2015., Brown et al., 2020 & Li et al., 2014). In this 
paper, energy burden is used as a proxy for energy affordability. Figure 1 below 
shows monthly LMI electricity expenditures, while figure 2 depicts fuel and gas 
expenditures for LMI households.

Figure 1: LMI Households Electricity Expenditures (source, NREL)

Legend
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As evidenced in these graphs, energy burdens are not distributed evenly. The lightest 
color on both graphs shows a monthly energy expenditure of $80 or less, while the 
darkest shades depict monthly energy burdens exceeding $160 a month for LMI 
households. The result of this analysis suggests that high energy burdens have a higher 
concentration in the south compared to other regions. To gain a better understanding 
of the energy burdens landscape at the census-tract level for LMI households, this paper 
augmented household incomes to consider the total amount spent on housing energy 
bills as shown in figure 3.

Figure 2: Fuel and Gas Expenditures for LMI Households ($/month).  
Source (NREL)

Legend
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Legend

Figure 3: Energy Burden (% income spent on housing energy bills).  
Source (NREL) 

This graph shows that areas with high energy burdens are sparsely distributed. The lightest 
color in the figure represents 6% or less of annual income spent on housing energy 
bills, while the northeast and southeastern regions remain heavily energy burdened, 
as illustrated on the graph by the darkest color, representing energy burdens of 19% 
or greater. To cite but a few states, these areas of high energy burdens include Maine, 
Vermont, New Hampshire, New York, Pennsylvania, Tennessee, West Virginia, Virginia, 
Kentucky, Georgia, Mississippi, South Carolina, North Carolina, and Alabama, as well as 
most of North Florida. As earlier mentioned in this report, the NREL data is only available 
at the census tract level, thereby making state comparisons difficult. To circumvent 
this limitation, the census-tract energy burdens are aggregated to estimate state-level 
energy burdens. Data aggregation as used in this paper has the following advantages: 
(1) to make it easier to identify trends in energy burdens for the sampled data, (2) to 
facilitate machine learning to derive rich dataset used in the predictive modeling section 
of this paper, and (3) to derive useful statistical properties of the energy burden data 
such as normality of the distribution. The graphical analysis of this approach is presented 
in the figure below for LMI and non-LMI households, while Table 2 is a ranking of energy 
impoverished states, applying the model developed by Cook and Shah (2018).



14	 Energy Impoverishment and Energy Insecurity in the United States

Table 2: Energy Impoverished States

AK 42.4% 24.5%

ME 40.4% 28.0%

VT 27.2% 19.3%

MS 26.7% 8.3%

HI 23.1% 6.4%

SC 22.0% 7.3%

AL 20.9% 7.2%

NC 19.8% 7.7%

NH 19.7% 16.8%

GA 19.4% 6.9%

RI 19.4% 16.0%

KY 19.1% 6.2%

AR 18.9% 7.3%

PA 18.7% 12.3%

CT 18.5% 14.9%

WV 17.8% 7.0%

NY 16.3% 10.9%

AZ 16.2% 6.2%

MA 15.6% 10.5%

NM 15.2% 5.3%

TN 14.6% 6.3%

MI 14.5% 7.5%

VA 14.2% 6.4%

MO 14.1% 6.3%

DE 13.5% 7.5%

LA 13.2% 4.4%

Figure 4: Energy Burden Trends in the U.S.
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MD 11.9% 6.5%

ID 11.7% 6.9%

SD 11.6% 5.6%

FL 11.4% 5.2%

OR 11.1% 6.3%

OK 10.5% 4.8%

ND 10.3% 4.8%

Note: Derived through aggregation of state county energy burdens for each state

As evidenced from the table above, 33 states (out of 50 states) have double-digit energy 
burden percentages, representing approximately two-thirds of LMI households, which 
indicates the very uneven distribution of energy burden patterns across LMI households. 
While heating expenses contribute to energy burdens in the Northeast, cooling expenses 
result in high energy burdens in the Southeast. Using the same energy classification 
matrix by Cook and Shah (2018), Table 3 shows that there are approximately 13 LMI 
energy burdened states (7% - 10%) as compared to 5 energy-stressed states (4% - 7%).

Table 3: Energy Stressed and Energy Burdened States

OH 10.0% 6.3%

MT 9.8% 5.3%

TX 9.2% 4.4%

MN 9.0% 5.9%

WI 9.0% 5.8%

IN 8.8% 5.8%

NJ 8.3% 6.0%

NV 7.9% 5.3%

NE 7.8% 4.7%

CO 7.8% 3.8%

WA 7.3% 4.3%

IL 7.2% 4.1%

DC 7.1% 1.8%

KS 6.9% 4.6%

CA 6.9% 3.8%

IA 6.6% 4.3%

UT 6.3% 3.3%

WY 5.6% 3.9%

Note: Derived through aggregation of state county energy burdens for each state

State Abbreviation LMI Energy Burden Non-LMI Energy Burden
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3.2 Energy Burden Comparisons – A 
Non-Parametric Statistical Analysis 

Having examined LMI household energy burden trends in the previous section, this 
section provides further comparisons of energy burdens at the aggregated census-tract 
and MSA levels respectively for methodological soundness. Drehobl and Ross (2016, p. 
47) reported highest quartile energy burdens for major cities for LMI households. The 
statistical definition of highest quartile as used in the paper by Drehobl and Ross (2016) 
is considered the maximum percentile (representing the 4th quartile of the distribution) 
for each major city. Table 4 represents a comparative analysis of energy burdens at the 
MSA level and aggregated census-tract level.

Table 4: Energy Burden Methodological Comparisons 
City State Drehobl and Ross (2016) Moleka (2021)

Atlanta GA 18.24 19.4

Baltimore MD 13.65 11.91

Birmingham AL 18.82 20.87

Boston MA 12.36 15.63

Charlotte NC 14.45 19.8

Detroit MI 15.26 14.49

Indianapolis ID 12.83 11.72

Kansas City MO 14.6 14.06

Louisville LY 12.74 19.11

Memphis TN 25.47 14.6

Miami FL 11.04 11.4

Minneapolis MN 8.2 9.04

New York City NY 14.01 16.26

Philadelphia PA 16.67 18.67

Phoenix AZ 13.42 16.19

Richmond VA 11.51 14.16

Seatle WA 8.05 7.31

St Louis MO 17.78 14.06

Virginia Beach VA 12.61 14.16

Average 14.300% 14.88%

It may seem at first glance that energy burden percentages at the MSA levels are lower 
than those at the state-level. This may be explained by the fact that the state-wide 
energy burden includes rural areas, with historically higher energy burdens because 
housing stocks are rental with high structural issues, as studies show (Li et al., 2014, 
McCormick, 2015 & Shoemaker et al., 2018). This suggests that rural areas tend to be 
disaggregated by energy burdens. However, the combined average of the MSAs and the 
state-wide are quantitatively unchanged as evidenced in Table 4 above. This brings us 
to the next section, which examines if both datasets come from the same distribution.
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The Mann-Whitney (1947) 𝑈𝑈 test, also called the Wilcoxon rank-sum test, compares two 

unpaired distributions, based on the assumption that each datapoint is sampled independently 

from the same distribution. The Mann-Whitney test is used when the sample sizes are small 

(𝑛𝑛 < 30), and the distributions are not normally distributed.4 The 𝑈𝑈-test examines if two 

groups have the same median, which seem appropriate for use in comparing MSA and State-

wide energy burdens. Under the null hypothesis, there is no difference between the median 

values of the two data distributions as against the alternative hypothesis that there exists a 

significant variation. The test statistics, 𝑈𝑈 is defined as: 

𝑈𝑈 =  𝑛𝑛1 + 𝑛𝑛2 +  1
2𝑛𝑛1

(𝑛𝑛1 + 1) − 𝑇𝑇                                                                             (1)

where, 𝑛𝑛1 and 𝑛𝑛2 are the number of observations in both groups, and 𝑇𝑇, is the sum of ranks 

from the group containing the least observations. 
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Table   5 :   Analysis   of   Non-parametric   Test   Results   

3.2.1 Non-Parametric Statistical Analysis

Without assuming normality about the distribution, we test at the 5% level to determine 
whether energy burdens between the MSA and State levels are identical to each other 
or if the energy burdens differ from both populations. Under the null hypothesis, H0, the 
samples come from the same population, as against the alternative hypothesis, H1 that 
they are different – meaning the MSA energy burdens cannot be used as a proxy for the 
state-wide energy burdens and vice-versa. We applied a battery of non-parametric tests 
to explain if there are any differences between both datasets.

The Mann-Whitney (1947) U test, also called the Wilcoxon rank-sum test, compares 
two unpaired distributions, based on the assumption that each datapoint is sampled 
independently from the same distribution. The Mann-Whitney test is used when the 
sample sizes are small (n<30), and the distributions are not normally distributed.4 The 
U-test examines if two groups have the same median, which seem appropriate for use 
in comparing MSA and State-wide energy burdens. Under the null hypothesis, there 
is no difference between the median values of the two data distributions as against 
the alternative hypothesis that there exists a significant variation. The test statistics, U is 
defined as:

where, n1 and n2 are the number of observations in both groups, and T is the sum of ranks 
from the group containing the least observations.

The Kruskal-Wallis (1952) non-parametric test allows comparison of the median of more 
than two populations. Assuming k independent samples each of size nj, j = 1, . . . , K, 
the Kruskal-Wallis one way analysis of variance (ANOVA) tests the hypothesis that the 
samples come from the same continuous population. Given that    
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sum of all ranks in the jth sample and                  is the total number of observations in the  
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Table 5 below, provides a summary of the non-parametric tests results. 

Table 5: Analysis of Non-parametric Test Results
Test Type Test Statistic P-value

Mann-Whitney – 2 tail test (2TT) W = 148.5 0.3577**

Mann-Whitney – 1 tail test (less) W = 148.5 0.1788**

Mann-Whitney – 1 tail test (greater) W = 148.5 0.8287**

Wilcoxon – signed rank exact test V = 59 0.1564**

Kruskal-Wallis rank sum test Chi-squared = 17.795 0.3361**

Note: W is the Wilcoxon rank sum test. ** indicate significance at the 5% level. 

Observing that the p-values are greater than 0.05 in all cases, we do not reject the null 
hypothesis, meaning that the aggregated energy burden averages are similar for the 
sampled data. The next section provides an empirical analysis of the energy burden-LMI 
nexus.

4 The Mann-Whitney U test is the non-parametric equivalent of the two-sample independent test.
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4. Data and Results
This section briefly introduces a multivariate logistic regression model as a method of 
analyzing the determinants of high energy burdens in LMI households in the United 
States. The use of a predictive analysis model is to capture the effects of energy burden 
(measured as a binary outcome variable) on the resultant explanatory variables as 
probabilities. First, we focus on the general framework of reasonability analysis by 
defining the dataset, which is based on aggregated census-tract data, augmented 
with publicly available macroeconomic data, as indicators for each state. Second, 
the economic theoretical expectation of each driver is defined for use in the logistic 
regression model. This is followed by the methodology and explanation of results.

4.1 Variable Definition and Transformation
The dependent variable is a binary outcome variable that takes the value of 1 for 
each state where the energy burdens are at least 10%, and 0 otherwise. The novelty 
of this approach and contributions to the literature are that not many studies 
have used predictive modeling to analyze the determinants of energy burdens for 
LMI households, augmented with macroeconomic variables, to capture the wider 
implications of unsustainable energy burdens that are the results of utility bills. Table 
6 summarizes the dataset used in the empirical section of this paper, together with 
the predictors.

Table 6: Data Sources and Definition of Variables

Variable Type Definition
Type of 

Transformation 
used

Driver Impact on energy 
burden

Data Source

Dependent variable Energy burden Takes the value 
of 1, where 
energy burden 
>= 10 and 0 
otherwise

None Aggregated from 
the census tract LMI 
household energy burden 
data provided by NREL. 

Predictor Variables

Unemployment 
rate

Seasonally 
adjusted

None Positive. An increase in 
state-wide unemployment 
has a direct impact on 
energy burden.

US Bureau of Labor 
Statistics (June 2021 
estimates).

Poverty rate Percentage 
of persons in 
poverty

None Positive – Poverty rate 
also directly affects energy 
burdens

US Census Bureau5

Log_hhIncome Median 
Household 
income

Natural log Negative – a decrease in 
household income reduces 
marginal propensity to 
consume such as utility 
bills payment.

U.S. Census Bureau

Log_avg_mbill Average monthly 
utility bill

Natural log Positive impact Aggregated from the 
NREL

5 Accessed August 2021 at: https://www.census.gov/quickfacts/fact
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Seasonally adjusted unemployment rate data for each state were obtained from the US Bureau of Labor 
Statistics6 (June 2021 estimates). An increase in the state-wide unemployment rate has a direct impact 
on the energy burden levels. Studying the drivers of energy insecurity in the Southeast, William and Kelley 
(2021) established that the median annual income spent on energy for LMI households is between 10% 
and 13%. There may be several physical factors affecting this. For example, the aging housing stock is one 
main driving factor. The study by William (2021), shows that 57% of all residential homes in the Southeast 
were created before recent energy efficiency legislation. According to this study, the old energy-inefficient 
homes paired with hot summers and temperate winters, where heating and cooling are often used, drive 
energy bills up. Pennsylvania7, Maine, and Michigan are also found to have old housing stocks. According 
to the National Center for Health Housing (2015) approximately 40% of housing units in Pennsylvania were 
built before 1940 and specifically in Philadelphia, 95% of housing units were built before 1978. Studying the 
prevalence of energy burdens in Maine, Rector (2019) found that about 25% were built before 1940 and 
Michigan’s8 is at around 17%.

Maine has the added physical issue that a little over 40% of LMI households use propane as their primary 
heating fuel. Propane is the most expensive heating fuel, more than twice the price of natural gas, electricity, 
and fuel oil (Allison et al., 2019). The high number of old non-energy efficient housing units, especially in 
states like Maine where the fuel type is extremely expensive, are causing LMI households to pay a large 
percentage of their annual income for energy. Figure 5 shows the correlation plot, with histograms, 
density functions, smoothed lines, and correlation coefficients for the predictor variables. These visuals are 
assembled to enable visualization of no evidence of multicollinearity between the explanatory variables.

Housing Indicators

Rent burden Defined as 
median gross 
rent as a 
percentage of 
median monthly 
income

None Positive impact. Most 
LMI occupants live in 
residential and multifamily 
buildings. Rent increases 
have a direct impact on 
energy burdens.

U.S. Census Bureau

Persons_pHH Number of 
persons per 
household

None Positive (indirect impact) U.S. Census Bureau

Housing stocks Total number of 
housing units for 
each state

Natural log Negative impact U.S. Census Bureau

Building permits Total number of 
building permits 
for each state

Natural log Negative U.S. Census Bureau

Controls – Population and Demographics

Population State population Natural log Control U.S. Census Bureau

% AfrAM Percentage 
of African 
Americans

None Control U.S. Census Bureau

%Asian Percentage of 
Asians

None Control U.S. Census Bureau

%Hisp Percentage of 
Hispanic

None Control U.S. Census Bureau

6 Accessed August 2021 at: https://www.bls.gov/web/laus/laumstrk.htm
7 National Center for Healthy Housing (2015). Pennsylvania Health Housing Fact Sheet. https://nchh.org/resource-library/Healthy_

Housing_Fact_Sheet--Pennsylvania_2015_7.15.15_final.pdf
8 Michigan State Housing Development Authority (2000). Michigan Housing Market Analysis. https://www.michigan.gov/documents/

mshda_Section_IV_Cover_138408_7.pdf
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4.2	 Methodology
This section describes the use of a logistic regression model, which is an extension 
of the linear regression model for classification problems. Given that the dependent 
variable is a binary outcome variable, the solution for classification is logistic regression, 
to derive predicted probabilities of the response variable based on energy burden’s 
predicted outcomes. In its simplest form, the logistic function is defined as:

Considering a linear model, the relationship between predicted outcomes can be 
defined as:

Using equation (3), the right-hand side of equation (4) is converted into a probability 
model, with probabilities between 0 and 1 as follows as:

Inverting the logit model forces the predicted probabilities to be bound between 0 and 
1. By implication, the coefficients do not influence the logistic model linearly, unlike 
the linear regression model which assumes linearity. This is because the weight sum 
is transformed by the logistic function to a probability. The odds ratio is defined as the 
probability of an event occurring divided by the probability of no event. Applying the 
exponential function on both sides of equation (6) gives equation (7) as follows:

Figure 5: Spearman’s Rank Correlation between Regressors.
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Inverting  the  logit  model  forces  the  predicted  probabilities  to  bound  between  0  and  1.  By                 

implication,  the  coefficients  do  not  influence  the  logistic  model  linearly,  unlike  the  linear               

regression  model  which  assumes  linearity.  This  is  because  the  weight  sum  is  transformed  by                

the  logistic  function  to  a  probability.  The  odds  ratio  is  defined  as  the  probability  of  an  event                   

occurring  divided  by  the  probability  of  no  event.  Applying  the  exponential  function  on  both                
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By implication, incremental increases in one unit of an explanatory variable on the 
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9 These models were estimated with an 80% to 20% train and test data respectively.
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𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑒𝑒𝑒𝑒𝑒𝑒(𝛽𝛽𝑗𝑗(𝑥𝑥𝑗𝑗 + 1) − 𝛽𝛽𝑗𝑗𝑥𝑥𝑗𝑗) = 𝑒𝑒𝑒𝑒𝑒𝑒(𝛽𝛽𝑗𝑗)                                                  (9)

The results of this approach are presented in Table 7 through 10 for three competing models.9 

The binary dependent variable, is represented in equation 10 as: 

𝑦𝑦𝑖𝑖 = {1
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Population, 
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Poverty Rate 0.395* 0.458*** 0.399*** 
 (0.221) (0.042) (0.057) 

Unemployment Rate 0.282 0.362*** 0.312*** 
 (0.333) (0.075) (0.088) 

Log (Avg_monthly_bill) 6.899** 9.837*** 7.161*** 
 (3.176) (0.766) (0.836) 
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Constant -21.477 -27.786*** -21.531*** 

 
9 These models were estimated with an 80% to 20% train and test data respectively.  
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The binary dependent variable, is represented in equation 10 as: 

𝑦𝑦𝑖𝑖 = {1
0

         𝑖𝑖𝑖𝑖 𝐿𝐿𝐿𝐿𝐿𝐿 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 >= 10%
𝑂𝑂𝑂𝑂ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒                                                  (10)

Table 7: Model Coefficients of Energy Burden Determinants.  
 Dependent variable: LMI Energy Burden >= 10.0, 1, 0 

 (Baseline) 
(Demographics 

Weights = %AfrAm,  
%Asian & %Hisp) 

(Controlling for 
Population, 

Weight = log (pop)) 

Poverty Rate 0.395* 0.458*** 0.399*** 
 (0.221) (0.042) (0.057) 

Unemployment Rate 0.282 0.362*** 0.312*** 
 (0.333) (0.075) (0.088) 

Log (Avg_monthly_bill) 6.899** 9.837*** 7.161*** 
 (3.176) (0.766) (0.836) 

Persons per household -2.615 -5.453*** -3.140*** 
 (3.342) (0.766) (0.886) 

Log (Housing units) -0.664* -0.750*** -0.666*** 
 (0.395) (0.080) (0.103) 

Constant -21.477 -27.786*** -21.531*** 

 
9 These models were estimated with an 80% to 20% train and test data respectively.  



22	 Energy Impoverishment and Energy Insecurity in the United States

Observations 40 40 40

Log Likelihood -18.841 -468.473 -284.218

Akaike Inf. Crit. 49.683 948.947 580.435

Note: *p<0.1; **p<0.05; ***p<0.01

In the “Baseline Model”, the binary LMI household energy burdens are regressed against poverty 
rate, unemployment rate, number of persons per household as well as the natural logarithm of 
average monthly bill and housing stocks on a constant term. Being disproportionately affected 
by high energy burdens are people of color. According to the ACEEE report (2020a)10 across the 
country 36% of Black households, 28% of Hispanic households, and 35% of Native American 
households have a high energy burden. This is especially prevalent in the South where lasting 
effects of segregation and lack of representation prevail. This is also prevalent for inner-cities 
residents in such cities as Detroit11, Michigan, and Philadelphia12, Pennsylvania, where around 
41% of Black and Hispanic households face high energy burdens.

The “Demographic Model”, as used in this paper, extends the baseline model while controlling 
for the proportions of the African American, Asian, and Hispanic populations, as studies show 
that these groups are susceptible to high energy burdens, compared to other demographic 
populations. The “Population Model” controls for the variance in the entire population as an 
instrument. Additionally, diagnostic tests were performed to validate the coefficient estimates 
of the results as shown in the Table 8 below. Except for the baseline model, the variance 
inflation factors (VIF) are less than 2, indicating no evidence of multicollinearity. This means that 
the explanatory variables are not correlated with one another. Higher order autocorrelations 
were conducted using the Breusch-Godfrey test, while tests for heteroskedasticity were 
performed using the Breusch-Pagan and Goldfeld-Quandt tests. The validity of the functional 
specification is shown by the Rainbow and Harvey-Collier tests. In all cases, the null hypothesis 
of no misspecification in the functional form cannot be rejected. The results of these analyses 
are shown below.

Table 8: Summary of Diagnostic Tests
Test name Test type Baseline 

Model
Demographics Population 

Controlled

Multicollinearity Variance inflation 
factor

VIF > 7 VIF < 1 VIF < 1

Autocorrelation, 
order = 2

Breusch-Godfrey 
test

0.3972** 0.3972** 0.3972**

Autocorrelation, 
order = 3

Breusch-Godfrey 
test

0.3255** 0.3255** 0.3255**

Heteroskedasticity Breusch-Pagan 0.2134** 0.2134** 0.2134**

Heteroskedasticity Goldfeld Quandt 0.6545** 0.6545** 0.6545**

Functional form Rainbow test 0.2525** 0.2525** 0.2525**

Functional form Harvey-Collier test 0.1991** 0.1991** 0.1991**

Concordance - - 0.68

Note: Do not reject  since PV > 0.05                               *p<0.1; **p<0.05; ***p<0.01

10 https://www.aceee.org/sites/default/files/pdfs/ACEEE-01%20Energy%20Burden%20-%20National.pdf
11 ACEEE (2020b). Energy Burdens in Detroit. https://www.aceee.org/sites/default/files/pdfs/aceee-01_energy_

burden_-_detroit.pdf
12 ACEEE (2020c). Energy Burden in Philadelphia. ACEEE, 2020. https://www.aceee.org/sites/default/files/pdfs/

aceee-01_energy_burden_-_philadelphia.pdf
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Poverty rate, unemployment rate, the natural logarithm of average monthly electricity bill, and 
the natural logarithm of housing units are significant at the 5% level. These variables also have 
the expected signs as predicted in the literature. If the state-wide poverty rate increases by 
one unit, the expected change in the log-odds of an LMI household being energy burdened 
is 0.458 (using Model 2 as an example). Table 8 helps in depicting if the effects are positive or 
negative but does not, however, illustrate the magnitude of energy burdens propagated by the 
predicted variables. To do this, Table 9 summarizes the relative risk, otherwise termed odds 
ratio of each effect.

Table 9: Relative Risk Analysis – Odds Ratio
Dependent variable: LMI Energy Burden >= 10.0, 1, 0

(Baseline)
(Demographics

Weights = %AfrAm, 
%Asian & %Hisp)

(Controlling for
Population,

Weight = log (pop))

Poverty Rate 1.484* 1.580*** 1.490***

(0.221) (0.042) (0.057)

Unemployment Rate 1.326 1.436*** 1.365***

(0.333) (0.075) (0.088)

Log (Avg_monthly_bill) 991.422** 18,704.600*** 1,288.474***

(3.176) (0.766) (0.836)

Persons per household 0.073 0.004*** 0.043***

(3.342) (0.766) (0.886)

Log (Housing units) 0.515* 0.472*** 0.514***

(0.395) (0.080) (0.103)

Constant 0.000 0.000*** 0.000***

(14.074) (3.140) (3.638)

Observations 40 40 40

Log Likelihood -18.841 -468.473 -284.218

Akaike Inf. Crit. 49.683 948.947 580.435

Note: *p<0.1; **p<0.05; ***p<0.01
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In all three models, the average monthly bill exerts the greatest impact on energy burden. 
Holding all things constant, when poverty rate increases by one unit, it is 1.580 times 
more likely to be y=1 as opposed to y=0 – meaning the odds of an LMI household being 
energy impoverished because of poverty is 1.580. The existing literature suggests that LMI 
households pay significantly more on electricity bills than the average household. These 
unsustainable energy burdens are the results of utility bills accounting for approximately 
8% of low and moderate household incomes, leaving LMI households with tough choices 
to make about keeping the lights on versus paying for other necessities such as food or 
medicine (Drehobl and Ross, 2016).

Additionally, Table 10 shows the logit model predicted probabilities, which are derived by 
inverting the logit model.13 As evidenced from this table, the probability of an LMI household 
becoming energy impoverished increases with average monthly bills, poverty rate, low 
housing stock, and unemployment rate. This research finds less evidence to support the 
fact that energy burdens are the direct consequence of the number of persons14 per LMI 
household.

Table 10: Predicted Probabilities of LMI Energy Burdens
Dependent variable: LMI Energy Burden >= 10.0, 1, 0

(Baseline)
(Demographics

Weights = %AfrAm, 
%Asian & %Hisp)

(Controlling for
Population,

Weight = log (pop))

Poverty Rate 0.597* 0.612*** 0.598***

(0.221) (0.042) (0.057)

Unemployment Rate 0.570 0.589*** 0.577***

(0.333) (0.075) (0.088)

Log (Avg_monthly_bill) 0.999** 1.000*** 0.999***

(3.176) (0.766) (0.836)

Persons per household 0.068 0.004*** 0.041***

(3.342) (0.766) (0.886)

Log (Housing units) 0.340* 0.321*** 0.339***

(0.395) (0.080) (0.103)

Constant 0.000 0.000*** 0.000***

13 See Gelman and Hill (2007).
14 This variable has a negative coefficient in Table 7.
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(14.074) (3.140) (3.638)

Observations 40 40 40

Log Likelihood -18.841 -468.473 -284.218

Akaike Inf. Crit. 49.683 948.947 580.435

Note: *p**p***p<0.01

A solution to addressing these problems is updating homes with new insulation, roofing, 
siding, windows, appliances, etc. to make them more energy efficient. The upfront costs 
to do this, however, are too much for LMI households (Drehobl et al., 2020). Drehobl et al. 
(2020) found that it is especially difficult for multifamily homes and renters to implement 
housing upgrades. Multifamily homes are much bigger and have complex heating and 
cooling and landlords of rented homes end up benefiting much more than the renters 
themselves. This is true for most states, however, Holder (2020) found that in Virginia, 
homeowners had higher energy insecurity than both multifamily units and renters.
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5. Solutions to the Energy 
Burden Challenges in the U.S.
Based on the findings from this study that across the US, the average LMI household 
spends 14.5% or more of income on energy expenditures as compared to 7.7% for 
non-LMI households. This paper finds that LMI households’ energy burdens double 
that of non-LMI households. This section is an attempt to describe opportunities that 
offer the greatest hope to reduce energy burdens for LMI households.

5.1	 Energy Efficiency Programs
Figure 6 below shows energy efficiency gains that could be implemented to solve the 
energy burden problem in the US. This is because homes occupied by LMI families 
and individuals are often characterized by structural issues such as poor insulation. 
As a result, energy-efficiency programs have the potential of reducing consumption 
which will likely result in a reduction in household subscriber electricity costs.

Figure 6: LMI (AMI) Energy Efficiency Bill Savings ($/year), NREL

Legend
($/year)

As evidenced from figure 6 above, energy efficiency programs such as the installation 
of smart equipment could have the greatest impact in high energy burdened states. 
For example, the introduction of energy efficiency programs in each state could lead 
to $600 or more cost savings per household per year, seen by the darker shades. 
Electric bill savings delivered by Solar for All programs is another solution to the 
energy burden problem, in that this method could provide LMI families with the 
benefits of locally generated clean energy through efforts such as the DC Solar 
for All project (Daniel, 2019). Figure 7 shows electric bill savings potential for LMI 
households through the installation of solar panels.
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A less energy burdened state like California has massive electricity bill savings potential 
— with estimates of $1,600 or more — partly due to longer sunny hours.

5.2	 Climate Change Impact 
Climate change has a notable impact on energy burden, which will be discussed in this 
section. Flaherty et al. (2020) examined utility disconnection policies across the US caused 
by extreme temperatures. This proven connection between extreme temperatures 
and utility disconnections holds additional significance when the major temperature 
fluctuations predicted to come about due to climate change are considered.

Figure 7: Potential LMI Household Electric Bill Savings ($/year).  
Source – NREL.

Legend
($/year)

Legend
(CDD/year)

Figure 8: Cooling Degree Days (CDD), Source – NREL
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As evidenced from the graphs above, high energy burdens in the south are partly the 
result of extreme temperatures, which lead to longer cooling days compared to other 
regions of the country. This study recommends policy measures to tackle the impacts 
of climate change, particularly in the South, which is more susceptible to extreme 
temperatures due to climate change.

Figure 9: Heating Degree Days, Source NREL.

Legend
(HDD/year)
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6. Conclusion and Policy 
Recommendations
Using census tract data from the NREL, augmented with publicly available 
macroeconomic and housing stock data from the US Census Bureau, this paper 
finds that energy burdens are not distributed evenly in the US. These unsustainable 
energy burdens are the results of utility bills, poverty rates, unemployment rates 
and low housing stocks presenting the greatest threat to affordability of residential 
housing. This study finds that LMI households have between 32% to 100%15 

probability of transitioning to economic hardship and poverty relative to their 
non-burdened households. Studying Colorado’s energy burden in 2015, Cook and 
Shah (2018) estimated that low-income householders are ‘energy impoverished’ 
when total energy expenditure as a percentage of income exceeds 11%. Using the 
ranking developed by Cook and Shah (2018), this report finds aggregated energy 
burdens for LMI households to be 14.5% as compared to 7.7% based on the sample 
data. Using data from 2013-2014, Eisenberg (2014) also found energy burdens of 
16.3% and 3.5% for low and non-low-income householders, respectively, in the 
US. Despite energy abundance in the US coupled with the propagation of energy 
efficiency, bill-payment, and weatherization programs, low-income households 
continue to pay more on energy bills whereas their environmental, social, and 
economic conditions have eroded. Equitable energy distribution has long been 
an issue of concern when studying the prevalence of high energy burdens, as 
few low-income households benefit from energy-efficiency programs designed 
to reduce economic hardship and poverty compared to the size of the need. 
Many low-income households continue to live in older homes, which are often 
characterized by structural issues such as poor insulation, inefficient HVAC 
systems, leaky roofs, inefficient and sometimes large appliances which increases 
energy costs. High energy burdens contribute to the widening wealth disparity 
between low- and high-income groups. Federal programs like LIHEAP or WAP 
are underfunded and only reach a portion of qualified households. According to 
Luis (2016), compared to all other regions, the Southeast region - states like North 
Carolina, South Carolina, Georgia, Virginia, Alabama - has the lowest investment 
in energy efficient programs. Luis (2016) showed that LMI households in Maine, 
Pennsylvania, and Michigan are desperately in need of more programs that help 
them and their energy burdens.

This paper sought to assess opportunities that offer the greatest promise to 
reduce energy burdens in the US. Existing literature has not yet established strong 
evidence of a relationship between energy burden and energy prices nor is there 
sufficient empirical evidence of the relationship between energy burden and 
macroeconomic drivers, which motivated the approach used in this paper. This 
study shows that LMI households pay significantly more on electricity bills than 
non-LMI households. The result of this analysis shows regional imbalances in 
energy burdens which are greatest in the Southeast and Northeast regions of the 
country. This is partly explained by the fact that heating systems — particularly in 
the South — are predominantly electric, as shown in the figure below.

15 These conclusions are drawn from Table 10.
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This contrast explains some of the variations in energy burdens across the country. 
Additionally, this paper identifies the impact of climate change on energy burden 
susceptibility in the US. This analysis shows that extreme physical weather conditions 
raise the need for cooling, especially in the south, which is also characterized by a low 
housing inventory of new construction homes compared to older homes, (shown in the 
figure below) which as stated earlier, can be a major contributor to high energy costs.

Figure 10: Dominant Fuel Type, Source – NREL

Legend
(Fuel type) 
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The conclusions derived from this paper show that utility bills present a threat to the 
affordability of residential housing in the US. From a policy perspective, low-income 
households are not able to meet their monthly obligations due to high energy upfront 
costs, which are not applied evenly to all customers based on income levels by the 
utilities. Energy burdens can be reduced if utilities developed a framework where fixed 
charges are determined based on income. This study determines that weatherization 
is necessary, but it is not a sufficient approach to address structural deficiencies in 
housing facing LMI households. By implication, energy efficiency programs focusing 
on LMI households should anticipate and address potential structural challenges in the 
housing itself. This study shows that energy burden has the tendency of precluding low-
income households from enjoying sustainable long-term economic growth. As a result, 
this study recommends that energy efficiency and assistance programs aimed at low-
income households be prioritized as high monthly bills suggest energy conservation 
programs. The paper can be further extended to include the impact of heating and 
cooling degree days on the energy burdens for each state.

Legend
(Vintage)

Figure 11: Number of Housing Units by Vintage (Housing stocks,-
Source – NREL
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Appendix A: Energy Burden Landscape in the U.S.

State Abbreviation LMI Energy Burden
Non-LMI Energy 

Burden

AL 20.87% 7.20%

AK 42.35% 24.50%

AZ 16.19% 6.16%

AR 18.90% 7.29%

CA 6.87% 3.83%

CO 7.77% 3.75%

CT 18.49% 14.88%

DC 7.08% 1.77%

DE 13.45% 7.48%

FL 11.40% 5.17%

GA 19.40% 6.87%

HI 23.11% 6.36%

IA 6.61% 4.29%

ID 11.72% 6.86%

IL 7.20% 4.06%

IN 8.82% 5.78%

KS 6.89% 4.57%

KY 19.11% 6.22%

LA 13.18% 4.36%

MA 15.63% 10.52%

MD 11.91% 6.51%

ME 40.36% 28.05%

MI 14.49% 7.50%

MN 9.04% 5.87%

MO 14.06% 6.28%

MS 26.66% 8.28%

MT 9.85% 5.33%

NC 19.80% 7.74%

NE 7.80% 4.75%

NV 7.86% 5.31%

NH 19.68% 16.80%

NJ 8.35% 5.96%

NM 15.23% 5.27%

NY 16.26% 10.88%

ND 10.32% 4.79%

OH 10.00% 6.30%

OK 10.54% 4.81%
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OR 11.07% 6.31%

PA 18.67% 12.34%

RI 19.36% 15.98%

SC 22.02% 7.32%

SD 11.61% 5.63%

TN 14.60% 6.27%

TX 9.21% 4.36%

UT 6.30% 3.34%

VT 27.15% 19.34%

VA 14.16% 6.40%

WA 7.31% 4.27%

WV 17.79% 7.01%

WI 8.99% 5.84%

WY 5.60% 3.89%

Source: Derived by averaging energy burdens at the county level for  
each state from the NREL data

Appendix B: Energy Burden Indicators

State
Outcome 

Var.
Unemp.

Rate
Poverty 

Rate
Median 
HhInc

Median Gross 
Rent

Avg Monthly 
Bill

Dlrs Kwh

DE 1 5.8 11.3 68287 1130 125.6195 0.133163

GA 1 4 13.3 58700 1006 131.6603 0.117018

NV 0 7.8 12.5 60365 1107 103.808 0.112881

VA 1 4.3 9.9 74222 1234 127.1873 0.113607

MI 1 5 13 57144 871 102.7037 0.154554

NC 1 4.6 13.6 54602 907 118.8318 0.107469

IN 0 4.1 11.9 56303 826 119.0533 0.12053

SC 1 4.5 13.8 53199 894 150.2142 0.127719

NM 1 7.9 18.2 49754 844 75.82394 0.124327

MS 1 6.2 19.6 45081 780 124.387 0.105004

OK 1 3.7 15.2 52919 810 112.4263 0.101948

CO 0 6.2 9.3 72331 1271 83.79528 0.120711

OH 1 5.2 13.1 56602 808 107.2368 0.123971

MO 1 4.3 12.9 55461 830 119.0312 0.115323

FL 1 5 12.7 55660 1175 124.0777 0.110032

WV 1 5.3 16 46711 725 117.064 0.116626

PA 1 6.9 12 61744 938 107.8407 0.134965

RI 1 5.9 10.8 67167 1004 107.27 0.185074

KS 0 3.7 11.4 59597 850 120.8755 0.132678

WI 0 3.9 10.4 61747 856 97.6826 0.143658

NE 0 2.5 9.9 61439 833 120.3394 0.108495
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IA 0 4 11.2 60523 789 116.7207 0.118242

MA 1 4.9 9.4 81215 1282 108.8158 0.190066

OR 1 5.6 11.4 62818 1110 97.44264 0.109228

AL 1 3.3 15.5 50536 792 148.804 0.124673

ME 1 4.8 10.9 57918 853 82.024 0.152973

IL 0 7.2 11.5 65886 1010 79.77595 0.11717

MN 0 4 9 71306 977 105.3457 0.130004

UT 0 2.7 8.9 71621 1037 82.66082 0.112149

MT 0 3.7 12.6 54970 810 93.53178 0.111576

AK 1 6.6 10.1 77640 1244 120.2058 0.213725

AZ 1 6.8 13.5 58945 1052 121.6949 0.120096

AR 1 4.4 16.2 47597 745 108.6546 0.100438

CA 0 7.7 11.8 75235 1503 93.00101 0.173975

CT 1 7.9 10 78444 1180 132.5443 0.197316

HI 1 7.7 9.3 81275 1617 131.9275 0.272346

ID 1 3 11.2 55785 853 94.99037 0.101474

KY 1 4.4 16.3 50589 763 118.3682 0.105356

LA 1 6.9 19 49469 866 116.2247 0.094789

MD 1 6.2 9 84805 1392 136.0829 0.141662

NH 1 2.9 7.3 76768 1111 110.5135 0.186657

NJ 0 7.3 9.2 82545 1334 104.9825 0.157526

NY 1 7.7 13 68486 1280 98.9519 0.194211

ND 1 4 10.6 64894 826 120.2189 0.1028

SD 1 2.9 11.9 58275 747 129.8474 0.118422

TN 1 4.9 13.9 53320 869 128.8229 0.104124

TX 0 6.5 13.6 61874 1045 121.7275 0.108579

VT 1 3.1 10.2 61973 985 95.18822 0.175133

WA 0 5.2 9.8 73775 1258 91.45512 0.097015

WY 0 5.4 10.1 64049 855 96.1839303 0.11944
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Appendix C: Housing Indicators and Control Variables. 
State Rent burden %AfrAm %Asian %Hisp Persons phh Housing units Building permits Pop.

DE 19.8573667 23.2 4.1 9.6 2.57 443781 8455 973764

GA 20.56558773 32.6 4.4 9.9 2.7 4378391 55827 10617423

NV 22.00612938 10.3 8.7 29.2 2.67 1285684 19716 3080156

VA 19.95095794 19.9 6.9 9.8 2.61 3562143 33813 8535519

MI 18.29063419 14.1 3.4 5.3 2.47 4629611 19735 9986857

NC 19.93333578 22.2 3.2 9.8 2.52 4747943 80474 10488084

IN 17.60474575 9.9 2.6 7.3 2.52 2921032 24919 6732291

SC 20.16579259 27 1.8 6 2.54 2351286 42340 5148714

NM 20.35615227 2.6 1.8 49.3 2.63 948473 5219 2096829

MS 20.76262727 37.8 1.1 3.4 2.62 1339021 7810 2976149

OK 18.36769402 7.8 2.4 11.1 2.58 1749464 13733 3956971

CO 21.08639449 4.6 3.5 21.8 2.56 2464164 40469 5759736

OH 17.13013674 13.1 2.5 4 2.43 4676358 29686 11689100

MO 17.95856548 11.8 2.2 4.4 2.46 2414521 19839 6137428

FL 25.33237513 16.9 3 26.4 2.65 7736311 164074 21477737

WV 18.62516324 3.6 0.8 1.7 2.42 732585 3204 1792147

PA 18.23011143 12 3.8 7.8 2.45 5053106 25706 12801989

RI 17.93737996 8.5 3.7 16.3 2.47 410489 1374 1059361

KS 17.11495545 6.1 3.2 12.2 2.51 1288401 8211 2913314

WI 16.63562602 6.7 3 7.1 2.39 2725296 21226 5822434

NE 16.26979606 5.2 2.7 11.4 2.45 851227 9483 1934408

IA 15.64363961 4.1 2.7 6.3 2.4 1418626 12623 3155070

MA 18.94231361 9 7.2 12.4 2.52 2928732 17025 6892503

OR 21.20411347 2.2 4.9 13.4 2.51 1808465 18665 4217737

AL 18.80639544 26.8 1.5 4.6 2.55 2284847 19982 4903185

ME 17.6732622 1.7 1.3 1.8 2.32 750939 5304 1344212

IL 18.39541025 14.6 5.9 17.5 2.57 5388066 18058 12671821

MN 16.44181415 7 5.2 5.6 2.49 2477753 28148 5639632

UT 17.37479231 1.5 2.7 14.4 3.12 1133521 31775 3205958

MT 17.6823722 0.6 0.9 4.1 2.39 519935 5980 1068778

AK 19.22720247 3.7 6.5 7.3 2.8 319854 1420 731545

AZ 21.41657477 5.2 3.7 31.7 2.68 3075981 60342 7278717

AR 18.78269639 15.7 1.7 7.8 2.52 1389129 12493 3017804

CA 23.97288496 6.5 15.5 39.4 2.95 14366336 106075 39512223

CT 18.05109377 12.2 5 16.9 2.53 1524992 5471 3565287

HI 23.87450015 2.2 37.6 10.7 3 550273 3164 1415872

ID 18.34901855 0.9 1.6 12.8 2.68 751105 19130 1787065

KY 18.09879618 8.5 1.6 3.9 2.49 2006358 11281 4467673

LA 21.00709535 32.8 1.8 5.3 2.61 2089777 17283 4648794
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MD 19.69695183 31.1 6.7 10.6 2.67 2470316 17982 6045680

NH 17.36661109 1.8 3 4 2.46 64315 4320 1359711

NJ 19.39305833 15.1 10 20.9 2.69 3641812 36146 8882190

NY 22.42794148 17.6 9 19.3 2.59 8404381 37330 19453561

ND 15.27413937 3.4 1.7 4.1 2.3 380173 3493 762062

SD 15.38223938 2.3 1.5 4.2 2.43 401862 6600 884659

TN 19.55738935 17.1 2 5.7 2.52 3028213 49719 6829174

TX 20.26699421 12.9 5.2 39.7 2.85 11283353 230503 28995881

VT 19.07282204 1.4 1.9 2 2.3 339439 2077 623989

WA 20.4622162 4.4 9.6 13 2.55 3195004 43881 7614893

WY 16.01898546 1.3 1.1 10.1 2.46 280291 2128 578759
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